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ABSTRACT 
In radar and sonar systems, it is important to get a 

frequency spectrum on real time. To implement a high 
performance system, the update interval should be as 
short as possible, but this requirement is not easily 
achievable due to the limited hardware resource. 
Although some fast Fourier transform (FFT) algorithms 
and pruning techniques may be able to reduce 
computational complexity, the use of them does not 
guarantee the best solution. To overcome this problem, 
we propose a pruned generalized FFT (PGSFFT) 
combining the GSFFT and transform decomposition (TD). 
Since the PGSFFT takes advantages of both GSFFT and 
TD, it is possible to reduce the computational complexity 
of the system. The enhanced computational efficiency 
leads to the improvement of the system performance. To 
verify the performance of the proposed method, we 
analyze the required operations for the PGSFFT and 
perform simulations. Simulation results show that the 
proposed PGSFFT has better performance than other 
FFTs or pruning algorithms. 
 
KEY WORDS 
Pruning, Transform decomposition, GSFFT, sliding DFT 
 
 
1.  Introduction 
 

In radar and sonar systems, target information such as 
distance, bearing, and Doppler shift should be obtained on 
real time for target detection and estimation. For the real 
time information acquisition, it seems that time-domain 
processing is better than frequency-domain processing 
due to the computational burden. However, since the 
information which can be extracted from time-domain 
signal is restricted, the use of frequency-domain 
processing is inevitable. For frequency-domain processing, 
the first step is to transform the time-domain signal into 
its corresponding frequency domain signal. In this step, 
the widely-used method is the fast Fourier transform 
(FFT) [1]. It is certain that the FFT is an effective 
transform method but it may not be exactly true in some 
situations, for example: an update interval is very short or 
only partial range of frequency spectrum is required. In 
detection systems, information update interval should be 

as short as possible for fast and precise processing, but the 
computational burden, which is related to the number of 
executed FFT, arithmetically increases by decreasing the 
update interval. If the burden is acceptable in the given 
hardware resource, it may not be a problem. However, if 
the burden exceeds the system capability, it is hard to 
process the data in the frequency domain on real time. 
This short update interval problem may be solved by 
adopting additional hardware resource but it is not a 
recommended solution. Especially, in case of the partial 
use of frequency spectrum, a waste of the hardware 
resource is inevitable. Radar and active sonar systems 
radiate a pulse and detect a signal reflected from targets. 
Even though the received signal is distorted and Doppler 
shifted, its frequency characteristic does not change 
abruptly. This fact means that frequency band required for 
the detection is not a full-band but a part of it. It is 
required to eliminate unnecessary operations for the 
reduction of computational load but the FFT is not able to 
calculate only partial frequency band, resulting in 
hardware resource waste. 

These problems of the short update interval and partial 
use of the spectrum are closely connected to the system 
performance and they should be solved to implement an 
optimized system. Some researchers have dealt with these 
problems and they have presented some remarkable 
methods: generalized sliding FFT (SFFT) and pruning 
techniques such as transform decomposition (TD) [2]-[5]. 
The GSFFT is one of the computing methods of 
sequential discrete Fourier transform (DFT) using FFT 
and it has lower computation complexity than recursive 
FFT computation. The TD is one of the existing high 
efficiency pruning methods and it is able to compute only 
desired frequency bins. While the GSFFT and the TD 
may be a good solution to overcome the short update 
interval and partial use of the spectrum, respectively, they 
may not be when both requirements have to be dealt with 
in one process. To cope with the situation where two 
demands are required simultaneously, we propose a new 
method called the pruned GSFFT (PGSFFT). The 
PGSFFT is based on the combination of the GSFFT and 
the TD. The PGSFFT utilizes both of their advantages, 
and thus it is able to reduce the computational complexity 
in the given situation. 



 
The rest of this paper is organized as follows. In section 

2, we briefly describe the GSFFT and the TD which 
compose the proposed algorithm. The description on our 
proposed method and its computational complexity 
analysis are presented in section 3. In section 4, we show 
the computational efficiency of PGSFFT compared to 
other FFT and pruning techniques. Finally in section 5, 
we conclude the paper. 
 
 
2.  Overview of the GSFFT and TD 
 
2.1 Generalized Sliding FFT 
 

The sliding DFT (SDFT) is a computing method to 
sequentially get frequency-domain signal whenever the 
time-limited rectangular window is moved one sample [6]. 
The concept of the SDFT is that the DFT of the current 
input sequence in an N-points window can be obtained 
just with one complex multiplication and two complex 
additions when the one-sample-advanced DFT is known. 
Especially if the input sequence length N is a power of 
two, the SDFT can be shown as N-point FFT which 
requires N complex multiplications. From this idea, the 
sliding FFT (SFFT) is developed [2], [7]. The SFFT is 
very efficient method compared to recursive FFT 
computations but the remained problem is that the SFFT 
is only useful when input sequence slides one sample at a 
time. 

The generalized SFFT (GSFFT) is a method which hops 
power of two samples and the GSFFT makes it possible to 
eliminate the redundancies between consecutive slides. 
To help the understanding, an example is illustrated in fig. 
1. If the FFT computation is performed every two samples, 
the overlapped part between the previous and current 
window is dotted circle which is marked by ‘A’ in fig. 1. 
In the GSFFT, the ‘A’ marked butterfly is not computed 
because it has been already computed and saved to the 
memory in the previous calculation. Eliminating the 

redundancy part in fig. 1, the general FFT structure can be 
modified as fig. 2. 

For further explanation on the GSFFT, let U(m) be input 
signals which is moved into the window at the current 
iteration, then  and U(m) is defined as follows [7] 
 

( ) [ ( ) ( 1)  ( 2 1)]k Tm x n x n x n= - - +U K ,            (1) 
 

where x(n) is input signal. k is the number of nodes which 
do not use a previously saved data and it is logarithm of 
M to base 2. Using (1), the input vector x(m) in the 
window at m-th iteration can be expressed by [7] 
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where q is the number of nodes which use a previously 
saved data and it is the logarithm of N/M to base 2. The 
state vector Si(m) at i-th node is defined as and i is the 
node index whose range is 0 ≤ i < k + q. For 0 ≤ i < q, 
Si(m) is expressed by [7] 

 

1 , 12
,

( )1 1
( )

1 1 ( 2 )
k i

i
i i k q i

i k i

m
m

m
++ - -

æ ö é ùæ öé ù
= Äç ÷ ê úç ÷ê úç ÷ç ÷- -ë û ê úè ø ë ûè ø

S
S P I

V S
,  (3) 

 
where 

 

0

, 2

, 2

odd even

(0) (1) (2 1)

( ) ( )

[  ]

diag( , , , )

k

k

i

i k i

i k i

i

i N N N

m m

W W Ws s s -

ì =ï
= Äï

ï
= Äí

ï =ï
ï =î

S U
P P I

V V I

P e e

V K

.                 (4) 

 
Here, I2

k denotes the 2k by 2k identity matrix and Ä  is the 
Kroneker product. Pi denotes a 2i+1 by 2i+1 permutation 
matrix where eodd is 11 3 2 1[    ]i+ -¼e e e and eeven is 

12 4 2[    ]i+¼e e e  and er means the r-th column of the 2i+1 
by 2i+1 identity matrix. Vi is a diagonal matrix which is 
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Fig. 2. A structure of generalized sliding FFT at N = 8. The dotted line 
means that data which are computed and saved at the previous 
computation is loaded from the memory. 
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Fig. 1. A general FFT structure at N = 8. The dotted circle marked ‘A’
is the overlapped part of the previous and current FFT computation 
when the input data hops two samples at a time. Except the butterfly 
marked ‘A’, the other butterflies should be computed to get frequency 
bins. 
 



composed of twiddle factor WN and σ(r) is the bit reverse 
of r. For q ≤ i < k + q, Si(m) is expressed by [7] 
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and the next state is evaluated as follows 
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where Vi,t is ( )i t

NWs and σi(t) is equal to bit reverse of 
1( 1) mod / 2it N +- . 

The above equations, especially (3) and (6), show that 
the computational complexity of the GSFFT depends on 
the updated interval M and the window size N. To clarify 
the effect by various M and N, it is needed to quantify the 
computational complexity of the GSFFT. The number of 
complex multiplication is equal to the sum of the number 
of all twiddle factors. In (3), the number of required 
twiddle factors is 2i+k at each node and their sum is 
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Similarly, the sum of twiddle factors of (6) based on 
general radix 2 FFT computation is  
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From (6) and (7), the total number of complex 
multiplications for the GSFFT is (N/2)log2M + N − M. 
One complex multiplication is composed of 2 real 
additions and 4 real multiplications and 4 real additions 
per butterfly are required. The number of real additions 
and multiplications is 3Nlog2M + 6N − 6M and 2Nlog2M 
+ 4N − 4M and, respectively. Therefore, the total number 
of operations is 5Nlog2M + 10N − 10M. 

 
2.2 Transform Decomposition 
 
The GSFFT can reduce the computational complexity by 

omitting redundant calculations which are caused by the 
overlapped data samples between the previous and current 
window. However, when the desired part of the frequency 
spectrum is computed, it is not possible to use the GSFFT 
for reducing the unnecessary calculations. This problem is 
due to the fact that the GSFFT is able to produce full 
frequency spectrum. The pruning techniques are a method 
which eliminates the computation by the unessential input 
or output, and thus they may be a good solution to 
overcome the disadvantage of GSFFT. There exists many 
pruning methods but we only deal with the transform 
decomposition (TD) which is known to have high 
computation efficiency. 

 
The TD technique is based on the divide-and-conquer 

approach of the Cooley-Tukey FFT algorithm. The main 
idea of divide-and- conquer approach is that the DFT can 
be divided into small DFTs and obtained by combining 
their results. Fig. 3 shows the block diagram of the TD for 
output pruning. The TD is largely composed of three 
procedures: realignment of input sequence, Q P-point 
FFTs and recombination of the results. The detailed 
description of the TD is as follows [3]. 
The DFT is defined as 
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In the first step of the TD, the input data sequence whose 
length is N is restructured to Q subsets that each subset 
has P input data. Then the time index n can be written as 
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and we can rewrite (9) as follow 
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where < >p denotes the modulo-P operator. It is possible 
to divide (11) into two equations and they are 
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Fig. 3. The block diagram of the transform decomposition. 
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where the range of j is from 0 to P−1. The second step of 
the TD is calculation of Q P-point FFTs of (13). In this 
step, the computational efficiency of TD varies with the 
algorithm which is used for the computation of P-point 
FFT. In general, the spilt radix FFT algorithm is known to 
have the lowest complex multiplications and additions 
among the power of two FFT algorithms [8]. However, 
unlike the general radix 2 or 4 FFT algorithm, the number 
of butterflies is varied in successive stages. Since this 
problem makes it difficult to implement the radix 
algorithm on the hardware [9], we consider only the 
Cooley-Tukey FFT algorithm. The last step is to combine 
outputs of (13) using (12). In (12), the combining process 
is performed by the DFT but the computing method is not 
restricted to the DFT. The Goertzel algorithm based on an 
IIR filtering approach is one of the methods to improve 
computational efficiency [10] and it can be derived from 
(12) as follows 
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where m = Q − n2 − 1. Then let yk(j) as 
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From (14) and (15), X(k) can be described as  
 

( ) ( )k j QX k y j
=
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This equation means that X(k) is considered as the Q-th 
output of the convolution between the sequence (WN

k)j−1 

and XQ − j − 1(< k >)p. Fig. 4 (a) and (b) show the flow 
graph of (15) and its modified version, respectively. If the 
flow graph of Fig. 4 (b) is applied to the TD, it is able to 
reduce 4 multiplications to 2 multiplications per iteration. 
To evaluate the computational complexity of the TD, we 

assumed that the radix 2 FFT algorithm and the modified 
Goertzel algorithm of fig. 4 (b) are used for minimizing 
the computational complexity. If the length of the desired 
frequency bins is L, the number of real multiplications for 
TD is 2Nlog2P + 2LQ + 2L. The number of real additions 
is 3Nlog2P + 4L(Q − 1) + 4L and the total number of 
operations is 5Nlog2P + 6LQ +2L.  
 
 
3.  Pruned GSFFT 
 
The concept of the proposed pruned GSFFT is based on 

the idea that the P-point FFT of the TD is possible to be 
replaced with other FFT algorithms. Since the aim of this 
paper is to present the method which extracts the desired 
frequency band while sliding, we propose the efficient 
sliding output pruning technique by combining the 
GSFFT and the TD. That is, the GSFFT is used for P-
point FFT instead of the Cooley-Tukey algorithm. This 
proposed method is called pruned GSFFT (PGSFFT) and 
fig. 5 shows how the PGSFFT works. 
Letting M be the update interval and N be the window 

length. In the GSFFT, we can freely select M if it is only 
satisfied the condition that power of two. In the PGSFFT, 
assuming that N is the product of P and Q, M has to meet 
the additional condition as follows 
 

2   where  2 ,0 logdM Qx x d N= = £ £ .          (17) 
 

The updated inputs of PGSFFT at the m-th iteration is 
presented in (1) and they are distributed to the n2-th P-
point GSFFT as follows 
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Fig. 5. Pruned generalized sliding FFT (PGSFFT) 
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Fig. 4. (a) Flow graph of the first-order Goertzel algorithm; (b) Flow 
graph of the second-order Goertzel algorithm. 
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Each P-point GSFFT block can be computed as described 
in (3) and (6). Each output of the P-point GSFFT block is 
equal to (13) and (15) can be applied to each output of the 
P-point GSFFT block to compute only a subset of 
frequency points.  

To evaluate the computational complexity of the 
proposed method, we analyzed the number of required 
operations. The number of real multiplications for Q 
times P-point GSFFT block with updated input length 
M/Q is Q·[2Nlog2(M/Q) + 4P − 4(M/Q)]. If we assume 
that L is the length of the output subset, the number of 
required real multiplications for the PGSFFT can be 
obtained by 
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The total number of real additions required for the 
proposed PGSFFT is 
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Finally the total number of real operations can be 
expressed as follows 
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Optimum value of P which is corresponding to the 
minimal OPRPGSFFT can be calculated by taking the 
derivative of OPRPGSFFT for P. P should satisfy the 
condition of PGSFFTOPR

0
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and less than N.  
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From (17) and N=PQ, Popt should satisfy following 
equation.  
 

   2opt where  2 ,0 logdNP x
M
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In (24), if Popt is less than N/M, Popt is set to N/M as 
shown in fig. 6. 
 
 
4.  Computational efficiency of PGSFFT 
 

To verify the computational efficiency of the proposed 
PGSFFT algorithm, we compared various algorithms and 
it is presented in table 1. In the table 1, we can see the 
computational complexity of pruning FFT algorithms 
such as the TD and the Skinner’s method is dependent on 
the subset length L. The GSFFT which is one of the 
sliding DFT algorithms is dependent on the updated 
interval M. The optimum value of Popt is used for the 
transform decomposition using Cooley-Tukey for P-point 

 
 Table1. Computational complexity of various algorithms with PGSFFT 

Algorithm Real operations 
Cooley-Tukey [1] 25 logN N  

Transform 
Decomposition 

(Cooley-Tukey) [3] 
2

65 log 2LNN P L
P

+ +  

Pruned FFT 
(Skinner) [5] 25 log 2 2N L N L+ -  

GSFFT [2] 25 log 10 10N M N M+ -  

PGSFFT 2
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Fig. 6. Optimum value of P and modified optimum P for the case N=512 
and M=32. Ideal optimum value of P(solid line) under N/M must be set 
to N/M(dashed line). In this case, optimum value of P under 16 must be 
set to 16. 
 



FFT and PGSFFT. PGSFFT is dependent on both M and 
L. To compare the computational efficiency of algorithms, 
we fixed the parameters N and M and we performed a 
computer simulation. Here we note that Popt is given to 
the TD and PGSFFT using (24). The simulation results 
are presented in figs. 6 and 7.  

When the updated interval of M is less than 32, the 
computational complexity of the PGSFFT is less than 
other algorithms until the subset length reaches to 

approximately 200 samples as shown in fig. 6 (a) and (b). 
However, As M increases, fig. 6 (c) shows that the 
computational gain is closed to that of the pruned FFT. If 
M exceeds 64, PGSFFT has no advantage compared to 
other algorithms. This trend is due to the increase of 
butterflies which has to be computed in P-point GSFFT of 
PGSFFT. This fact means that PGSFFT dose not 
guarantee the computational efficiency regardless to M 
and there exists the upper bound of M. To ensure the 
computational efficiency of the PGSFFT, the M should be 
selected after comparing the efficiency of PGSFFT and 
other FFT algorithms by the system requirement. 
 
 
5.  Conclusion 
 

We presented a PGSFFT combining GSFFT and 
transform decomposition. By the mathematical analysis 
on the computational complexity, we showed that the 
number of required operation for the proposed PGSFFT is 
less than other pruning or sliding DFT algorithms when 
the update interval M is less than one eighth of window 
size N (or buffer size) and subband length L is less than 
N/3. Since the PGSFFT computes the updated input signal 
while sliding, it is able to show the desired frequency 
spectrum on real time with relatively lower computational 
complexity than every-sample FFT. This advantage is 
directly linked to the performance improvement of the 
system. Since the PGSFFT can be applied to the system 
which uses FFT algorithm such as radar, sonar, 
frequency-domain beamformer, and real-time audio 
system, it may be contributed to the hardware 
optimization. 
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Fig.7. Comparison of the total number of operations required for the 
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