

Fast Partial Frequency Spectrum Computation for Real-Time Information
Acquisition Systems

Chang-Eup Ha*, Wan-Jin Kim*, Dae-Won Do**, Dong-Hun Lee**, and Hyoung-Nam Kim*

*School of Electrical Engineering, Pusan National University, Busan, Korea
**Agency for Defense Development, Jinhae, Korea

hnkim@pusan.ac.kr

ABSTRACT
In radar and sonar systems, it is important to get a

frequency spectrum on real time. To implement a high
performance system, the update interval should be as
short as possible, but this requirement is not easily
achievable due to the limited hardware resource.
Although some fast Fourier transform (FFT) algorithms
and pruning techniques may be able to reduce
computational complexity, the use of them does not
guarantee the best solution. To overcome this problem,
we propose a pruned generalized FFT (PGSFFT)
combining the GSFFT and transform decomposition (TD).
Since the PGSFFT takes advantages of both GSFFT and
TD, it is possible to reduce the computational complexity
of the system. The enhanced computational efficiency
leads to the improvement of the system performance. To
verify the performance of the proposed method, we
analyze the required operations for the PGSFFT and
perform simulations. Simulation results show that the
proposed PGSFFT has better performance than other
FFTs or pruning algorithms.

KEY WORDS
Pruning, Transform decomposition, GSFFT, sliding DFT

1. Introduction

In radar and sonar systems, target information such as
distance, bearing, and Doppler shift should be obtained on
real time for target detection and estimation. For the real
time information acquisition, it seems that time-domain
processing is better than frequency-domain processing
due to the computational burden. However, since the
information which can be extracted from time-domain
signal is restricted, the use of frequency-domain
processing is inevitable. For frequency-domain processing,
the first step is to transform the time-domain signal into
its corresponding frequency domain signal. In this step,
the widely-used method is the fast Fourier transform
(FFT) [1]. It is certain that the FFT is an effective
transform method but it may not be exactly true in some
situations, for example: an update interval is very short or
only partial range of frequency spectrum is required. In
detection systems, information update interval should be

as short as possible for fast and precise processing, but the
computational burden, which is related to the number of
executed FFT, arithmetically increases by decreasing the
update interval. If the burden is acceptable in the given
hardware resource, it may not be a problem. However, if
the burden exceeds the system capability, it is hard to
process the data in the frequency domain on real time.
This short update interval problem may be solved by
adopting additional hardware resource but it is not a
recommended solution. Especially, in case of the partial
use of frequency spectrum, a waste of the hardware
resource is inevitable. Radar and active sonar systems
radiate a pulse and detect a signal reflected from targets.
Even though the received signal is distorted and Doppler
shifted, its frequency characteristic does not change
abruptly. This fact means that frequency band required for
the detection is not a full-band but a part of it. It is
required to eliminate unnecessary operations for the
reduction of computational load but the FFT is not able to
calculate only partial frequency band, resulting in
hardware resource waste.

These problems of the short update interval and partial
use of the spectrum are closely connected to the system
performance and they should be solved to implement an
optimized system. Some researchers have dealt with these
problems and they have presented some remarkable
methods: generalized sliding FFT (SFFT) and pruning
techniques such as transform decomposition (TD) [2]-[5].
The GSFFT is one of the computing methods of
sequential discrete Fourier transform (DFT) using FFT
and it has lower computation complexity than recursive
FFT computation. The TD is one of the existing high
efficiency pruning methods and it is able to compute only
desired frequency bins. While the GSFFT and the TD
may be a good solution to overcome the short update
interval and partial use of the spectrum, respectively, they
may not be when both requirements have to be dealt with
in one process. To cope with the situation where two
demands are required simultaneously, we propose a new
method called the pruned GSFFT (PGSFFT). The
PGSFFT is based on the combination of the GSFFT and
the TD. The PGSFFT utilizes both of their advantages,
and thus it is able to reduce the computational complexity
in the given situation.

The rest of this paper is organized as follows. In section

2, we briefly describe the GSFFT and the TD which
compose the proposed algorithm. The description on our
proposed method and its computational complexity
analysis are presented in section 3. In section 4, we show
the computational efficiency of PGSFFT compared to
other FFT and pruning techniques. Finally in section 5,
we conclude the paper.

2. Overview of the GSFFT and TD

2.1 Generalized Sliding FFT

The sliding DFT (SDFT) is a computing method to
sequentially get frequency-domain signal whenever the
time-limited rectangular window is moved one sample [6].
The concept of the SDFT is that the DFT of the current
input sequence in an N-points window can be obtained
just with one complex multiplication and two complex
additions when the one-sample-advanced DFT is known.
Especially if the input sequence length N is a power of
two, the SDFT can be shown as N-point FFT which
requires N complex multiplications. From this idea, the
sliding FFT (SFFT) is developed [2], [7]. The SFFT is
very efficient method compared to recursive FFT
computations but the remained problem is that the SFFT
is only useful when input sequence slides one sample at a
time.

The generalized SFFT (GSFFT) is a method which hops
power of two samples and the GSFFT makes it possible to
eliminate the redundancies between consecutive slides.
To help the understanding, an example is illustrated in fig.
1. If the FFT computation is performed every two samples,
the overlapped part between the previous and current
window is dotted circle which is marked by ‘A’ in fig. 1.
In the GSFFT, the ‘A’ marked butterfly is not computed
because it has been already computed and saved to the
memory in the previous calculation. Eliminating the

redundancy part in fig. 1, the general FFT structure can be
modified as fig. 2.

For further explanation on the GSFFT, let U(m) be input
signals which is moved into the window at the current
iteration, then and U(m) is defined as follows [7]

() [() (1) (2 1)]k Tm x n x n x n= - - +U K , (1)

where x(n) is input signal. k is the number of nodes which
do not use a previously saved data and it is logarithm of
M to base 2. Using (1), the input vector x(m) in the
window at m-th iteration can be expressed by [7]

() [() (1) (2 1)]

[() (1) (1)]

T T T q T

T

m m m m

x n x n x n N

= - - +

= - - +

x U U UK

K
, (2)

where q is the number of nodes which use a previously
saved data and it is the logarithm of N/M to base 2. The
state vector Si(m) at i-th node is defined as and i is the
node index whose range is 0 ≤ i < k + q. For 0 ≤ i < q,
Si(m) is expressed by [7]

1 , 12
,

()1 1
()

1 1 (2)
k i

i
i i k q i

i k i

m
m

m
++ - -

æ ö é ùæ öé ù
= Äç ÷ ê úç ÷ê úç ÷ç ÷- -ë û ê úè ø ë ûè ø

S
S P I

V S
, (3)

where

0

, 2

, 2

odd even

(0) (1) (2 1)

() ()

[]

diag(, , ,)

k

k

i

i k i

i k i

i

i N N N

m m

W W Ws s s -

ì =ï
= Äï

ï
= Äí

ï =ï
ï =î

S U
P P I

V V I

P e e

V K

. (4)

Here, I2

k denotes the 2k by 2k identity matrix and Ä is the
Kroneker product. Pi denotes a 2i+1 by 2i+1 permutation
matrix where eodd is 11 3 2 1[]i+ -¼e e e and eeven is

12 4 2[]i+¼e e e and er means the r-th column of the 2i+1
by 2i+1 identity matrix. Vi is a diagonal matrix which is

x(n)

x(n-1)

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

WN
0

WN
0

WN
2

WN
2WN

0

WN
0

WN
0

WN
1

WN
3

x(n-4)

x(n-5)
WN

2
0 (2)m -S

0 ()m ì
í
î

S

1(1)m -S

1()mS

Fig. 2. A structure of generalized sliding FFT at N = 8. The dotted line
means that data which are computed and saved at the previous
computation is loaded from the memory.

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

WN
0

WN
0

WN
0

WN
0

WN
2

WN
2WN

0

WN
0

WN
0

WN
1

WN
3

x(n)

x(n-1)

x(n-2)

x(n-3)

x(n-4)

x(n-5)

x(n-6)

x(n-7)

WN
2A

Fig. 1. A general FFT structure at N = 8. The dotted circle marked ‘A’
is the overlapped part of the previous and current FFT computation
when the input data hops two samples at a time. Except the butterfly
marked ‘A’, the other butterflies should be computed to get frequency
bins.

composed of twiddle factor WN and σ(r) is the bit reverse
of r. For q ≤ i < k + q, Si(m) is expressed by [7]

,0 ,1 , 1() [() () ()]Ti i i i Nm S m S m S m-=S , (5)

and the next state is evaluated as follows

1 1

1, ,

,1, 2 , 2

() ()1 1
() ()1 1k q i k q i

i t i t

i ti t i t

m m
m m+ - - + - -

+

+ + +

é ù é ùé ù
=ê ú ê úê ú-ê ú ê úë ûë û ë û

S S
S V S

, (6)

where Vi,t is ()i t

NWs and σi(t) is equal to bit reverse of
1(1) mod / 2it N +- .

The above equations, especially (3) and (6), show that
the computational complexity of the GSFFT depends on
the updated interval M and the window size N. To clarify
the effect by various M and N, it is needed to quantify the
computational complexity of the GSFFT. The number of
complex multiplication is equal to the sum of the number
of all twiddle factors. In (3), the number of required
twiddle factors is 2i+k at each node and their sum is

1
0 1 1

0

2 2 (2 2 2) 2 2
i q

i k k q q k k

i

N M
= -

+ - +

=

= + + + = - = -å L . (7)

Similarly, the sum of twiddle factors of (6) based on
general radix 2 FFT computation is

1

2log
2 2 2

i q k

i q

N kN N M
= + -

=

= =å . (8)

From (6) and (7), the total number of complex
multiplications for the GSFFT is (N/2)log2M + N − M.
One complex multiplication is composed of 2 real
additions and 4 real multiplications and 4 real additions
per butterfly are required. The number of real additions
and multiplications is 3Nlog2M + 6N − 6M and 2Nlog2M
+ 4N − 4M and, respectively. Therefore, the total number
of operations is 5Nlog2M + 10N − 10M.

2.2 Transform Decomposition

The GSFFT can reduce the computational complexity by

omitting redundant calculations which are caused by the
overlapped data samples between the previous and current
window. However, when the desired part of the frequency
spectrum is computed, it is not possible to use the GSFFT
for reducing the unnecessary calculations. This problem is
due to the fact that the GSFFT is able to produce full
frequency spectrum. The pruning techniques are a method
which eliminates the computation by the unessential input
or output, and thus they may be a good solution to
overcome the disadvantage of GSFFT. There exists many
pruning methods but we only deal with the transform
decomposition (TD) which is known to have high
computation efficiency.

The TD technique is based on the divide-and-conquer

approach of the Cooley-Tukey FFT algorithm. The main
idea of divide-and- conquer approach is that the DFT can
be divided into small DFTs and obtained by combining
their results. Fig. 3 shows the block diagram of the TD for
output pruning. The TD is largely composed of three
procedures: realignment of input sequence, Q P-point
FFTs and recombination of the results. The detailed
description of the TD is as follows [3].
The DFT is defined as

1

0

() () 0,1, , 1
N

nk
N

n

X k x n W k N
-

=

= = -å K . (9)

In the first step of the TD, the input data sequence whose
length is N is restructured to Q subsets that each subset
has P input data. Then the time index n can be written as

1
1 2

2

0,1, , 1
, where

0,1, , 1
n P

n Qn n
n Q
= -ì

= + í = -î

K

K
, (10)

and we can rewrite (9) as follow

1 2

2 1

1 2

2 1

1 1
()

1 2
0 0

1 1

1 2
0 0

() ()

() p

Q P
n Q n k

N
n n

Q P
n k n k

N N
n n

X k x n Q n W

x n Q n W W

- -
+

= =

- -
< >

= =

= +

é ù
ê ú= +
ê úë û

åå

å å
, (11)

where < >p denotes the modulo-P operator. It is possible
to divide (11) into two equations and they are

2
2

2

1

0

() ()
Q

n k
n p N

n

X k X k W
-

=

= < >å (12)

and

x0(0)
x0(k)

x0(P-1)

X(0)
X(k)

X(L-1)

only L
output
compu

ted

x(0)
x(1)
x(2)

x(N-1)

xQ-1(0)
xQ-1(k)

xQ-1(P-1)

X0(0)
X0(k)

X0(P-1)

XQ-1(0)
XQ-1(k)

XQ-1(P-1)

Input
mapping

Q length P
FFTs

Recombination

WN
(Q-1)k

WN
k

WN
0

Fig. 3. The block diagram of the transform decomposition.

1 1
2 2

1 1

1 1

1 2 1
0 0

() () ()
P P

n j n j
n nP P

n n

X j x n Q n W x n W
- -

= =

= + =å å , (13)

where the range of j is from 0 to P−1. The second step of
the TD is calculation of Q P-point FFTs of (13). In this
step, the computational efficiency of TD varies with the
algorithm which is used for the computation of P-point
FFT. In general, the spilt radix FFT algorithm is known to
have the lowest complex multiplications and additions
among the power of two FFT algorithms [8]. However,
unlike the general radix 2 or 4 FFT algorithm, the number
of butterflies is varied in successive stages. Since this
problem makes it difficult to implement the radix
algorithm on the hardware [9], we consider only the
Cooley-Tukey FFT algorithm. The last step is to combine
outputs of (13) using (12). In (12), the combining process
is performed by the DFT but the computing method is not
restricted to the DFT. The Goertzel algorithm based on an
IIR filtering approach is one of the methods to improve
computational efficiency [10] and it can be derived from
(12) as follows

2
2

2

1

0

1
1

1
0

() ()

()()

Q
n k

n p N
n

Q
k Q m

Q m p N
m

X k X k W

X k W

-

=

-
- -

- -
=

= < >

= < >

å

å
, (14)

where m = Q − n2 − 1. Then let yk(j) as

1
1

1
0

() ()()
j

k j m
k Q m p N

m

y j X k W
-

- -
- -

=

= < >å . (15)

From (14) and (15), X(k) can be described as

() ()k j QX k y j
=

= . (16)

This equation means that X(k) is considered as the Q-th
output of the convolution between the sequence (WN

k)j−1

and XQ − j − 1(< k >)p. Fig. 4 (a) and (b) show the flow
graph of (15) and its modified version, respectively. If the
flow graph of Fig. 4 (b) is applied to the TD, it is able to
reduce 4 multiplications to 2 multiplications per iteration.
To evaluate the computational complexity of the TD, we

assumed that the radix 2 FFT algorithm and the modified
Goertzel algorithm of fig. 4 (b) are used for minimizing
the computational complexity. If the length of the desired
frequency bins is L, the number of real multiplications for
TD is 2Nlog2P + 2LQ + 2L. The number of real additions
is 3Nlog2P + 4L(Q − 1) + 4L and the total number of
operations is 5Nlog2P + 6LQ +2L.

3. Pruned GSFFT

The concept of the proposed pruned GSFFT is based on

the idea that the P-point FFT of the TD is possible to be
replaced with other FFT algorithms. Since the aim of this
paper is to present the method which extracts the desired
frequency band while sliding, we propose the efficient
sliding output pruning technique by combining the
GSFFT and the TD. That is, the GSFFT is used for P-
point FFT instead of the Cooley-Tukey algorithm. This
proposed method is called pruned GSFFT (PGSFFT) and
fig. 5 shows how the PGSFFT works.
Letting M be the update interval and N be the window

length. In the GSFFT, we can freely select M if it is only
satisfied the condition that power of two. In the PGSFFT,
assuming that N is the product of P and Q, M has to meet
the additional condition as follows

2 where 2 ,0 logdM Qx x d N= = £ £ . (17)

The updated inputs of PGSFFT at the m-th iteration is
presented in (1) and they are distributed to the n2-th P-
point GSFFT as follows

x(n-n0(0)) X(0)

X(k)

X(L-1)

only L
output

computed

x(n)
x(n-1)
x(n-2)

x(n-N+1)

x(n-nQ-1(0))

X0(0)
X0(k)

X0(P-1)

XQ-1(0)
XQ-1(k)

XQ-1(P-1)

Input
mapping

Q length P
GSFFTs

Recombination

WN
(Q-1)k

WN
k

WN
0

x(n-M+1)

U0(m)

x(n-n1(0)) X1(0)
X1(k)

X1(P-1)

M

n2=0

n2=1

n2=Q-1

Fig. 5. Pruned generalized sliding FFT (PGSFFT)

-WN
-k

z-1

yk(j)

WQ-j-1
[<k>p]

2cos(2pk/N)

z-1

yk(j)

+

+ +

-1

WQ-j-1
[<k>p]

WN
k

z-1

(a)

(b)

+

Fig. 4. (a) Flow graph of the first-order Goertzel algorithm; (b) Flow
graph of the second-order Goertzel algorithm.

2
0

() ()

()

1(0) (1)

n

T
Mx n x n x n
Q

m

R R R
é ùæ öæ ö

- - ¼ - -ê úç ÷ç ÷ç ÷ê úè øë

=

è øû

S

. (18)

where

1
1 1 2

2

0,1, , / 1
() , where

0,1, , 1
n M Q

R n Qn n
n Q
= -ì

= + í = -î

K

K
, (19)

Each P-point GSFFT block can be computed as described
in (3) and (6). Each output of the P-point GSFFT block is
equal to (13) and (15) can be applied to each output of the
P-point GSFFT block to compute only a subset of
frequency points.

To evaluate the computational complexity of the
proposed method, we analyzed the number of required
operations. The number of real multiplications for Q
times P-point GSFFT block with updated input length
M/Q is Q·[2Nlog2(M/Q) + 4P − 4(M/Q)]. If we assume
that L is the length of the output subset, the number of
required real multiplications for the PGSFFT can be
obtained by

PGSFFT

2

2

MUL

2 log 4 4 2 (1)

22 log 4 4 2

M MQ P P L Q
Q Q

MP LNN N M L
N P

æ öæ ö æ ö
= + - + +ç ÷ç ÷ ç ÷ç ÷è ø è øè ø

æ ö= + - + +ç ÷
è ø

. (20)

The total number of real additions required for the
proposed PGSFFT is

PGSFFT

2

2

ADD

3 log 6 6 4

43 log 6 6

M MQ P P LQ
Q Q

MP LNN N M
N P

æ öæ ö æ ö
= + - +ç ÷ç ÷ ç ÷ç ÷è ø è øè ø

æ ö= + - +ç ÷
è ø

. (21)

Finally the total number of real operations can be
expressed as follows

PGSFFT

2

OPR
65 log 10 10 2MP LNN N M L

N P
æ ö= + - + +ç ÷
è ø

. (22)

Optimum value of P which is corresponding to the
minimal OPRPGSFFT can be calculated by taking the
derivative of OPRPGSFFT for P. P should satisfy the
condition of PGSFFTOPR

0
P

¶
=

¶
and be the closest power of two

and less than N.

PGSFFTOPR 0
6 ln 2 0.8318
5opt

P
P P L L¶

=
¶

ê ú ê ú= = = ê úê ú ë ûê úë ûë û
, (23)

From (17) and N=PQ, Popt should satisfy following
equation.

 2opt where 2 ,0 logdNP x
M

x d N= £= £ . (24)

In (24), if Popt is less than N/M, Popt is set to N/M as
shown in fig. 6.

4. Computational efficiency of PGSFFT

To verify the computational efficiency of the proposed
PGSFFT algorithm, we compared various algorithms and
it is presented in table 1. In the table 1, we can see the
computational complexity of pruning FFT algorithms
such as the TD and the Skinner’s method is dependent on
the subset length L. The GSFFT which is one of the
sliding DFT algorithms is dependent on the updated
interval M. The optimum value of Popt is used for the
transform decomposition using Cooley-Tukey for P-point

 Table1. Computational complexity of various algorithms with PGSFFT

Algorithm Real operations
Cooley-Tukey [1] 25 logN N

Transform
Decomposition

(Cooley-Tukey) [3]
2

65 log 2LNN P L
P

+ +

Pruned FFT
(Skinner) [5] 25 log 2 2N L N L+ -

GSFFT [2] 25 log 10 10N M N M+ -

PGSFFT 2
65 log () 10 -10 2MP LNN N M L

N P
+ + +

5 10 15 20 25 30

5

10

15

20

25

30

35

optimum P for the PGSFFT(N=512, M=32)

L(length of subband)

op
tim

um
 P

Popt
modified Popt
0.8318L

Fig. 6. Optimum value of P and modified optimum P for the case N=512
and M=32. Ideal optimum value of P(solid line) under N/M must be set
to N/M(dashed line). In this case, optimum value of P under 16 must be
set to 16.

FFT and PGSFFT. PGSFFT is dependent on both M and
L. To compare the computational efficiency of algorithms,
we fixed the parameters N and M and we performed a
computer simulation. Here we note that Popt is given to
the TD and PGSFFT using (24). The simulation results
are presented in figs. 6 and 7.

When the updated interval of M is less than 32, the
computational complexity of the PGSFFT is less than
other algorithms until the subset length reaches to

approximately 200 samples as shown in fig. 6 (a) and (b).
However, As M increases, fig. 6 (c) shows that the
computational gain is closed to that of the pruned FFT. If
M exceeds 64, PGSFFT has no advantage compared to
other algorithms. This trend is due to the increase of
butterflies which has to be computed in P-point GSFFT of
PGSFFT. This fact means that PGSFFT dose not
guarantee the computational efficiency regardless to M
and there exists the upper bound of M. To ensure the
computational efficiency of the PGSFFT, the M should be
selected after comparing the efficiency of PGSFFT and
other FFT algorithms by the system requirement.

5. Conclusion

We presented a PGSFFT combining GSFFT and
transform decomposition. By the mathematical analysis
on the computational complexity, we showed that the
number of required operation for the proposed PGSFFT is
less than other pruning or sliding DFT algorithms when
the update interval M is less than one eighth of window
size N (or buffer size) and subband length L is less than
N/3. Since the PGSFFT computes the updated input signal
while sliding, it is able to show the desired frequency
spectrum on real time with relatively lower computational
complexity than every-sample FFT. This advantage is
directly linked to the performance improvement of the
system. Since the PGSFFT can be applied to the system
which uses FFT algorithm such as radar, sonar,
frequency-domain beamformer, and real-time audio
system, it may be contributed to the hardware
optimization.

Acknowledgement

This work has been supported by the Agency for Defence
Development, South Korea, “Research on the optimum
signal processing technique for the wide-band SONAR
system” 2009-2011.

Fig.7. Comparison of the total number of operations required for the
PGSFFT versus a various updated sample length (N=512).

(a)

(b)

(c)

Fig. 6. Computational complexity of PGSFFT with various algorithms:
(a) M=16; (b) M=32; (c) M=64.

References

[1] A.V. Oppenheim, Discrete-Time Signal Processing,
2nd ed.(Upper Saddle River, NJ: Prentice-Hall, 1996).

[2] B. Farhang-Boroujeny, S. Gazor, Generalized sliding
FFT and its application to implementation of block LMS
adaptive filters, IEEE Trans. Signal Proc., 42(3), 1994,
532-538.

[3] H. V. Sorensen, C. Sidney, Efficient Computation of
the DFT with Only a Subset of Input or Output Points,
IEEE Trans. Signal Processing, 41(3), 1993, 1184-1199.

[4] J. D. Markel, FFT pruning. IEEE Trans. Audio
Electroacoust., 19(4), 1971, 305-311.

[5] D.P. Skinner, Pruning the decimation in-time FFT
algorithm for computing a few DFT points. IEEE Trans.
Acoust., Speech, Signal Processing,24(2), 1976, 193-194.

[6] E. Jacobsen, R. Lyons, The sliding DFT, IEEE Signal
Proc. Magazine, 20(2), 2003, 74-80.

[7] S. Gazor, B. Farhang-Boroujeny, A state space
approach for efficient implementation of block lms
adaptive filters. Proc. ICCS/ISITA. conf. Commun. Syst.,
Singapore, 1992, 808-812.

[8] H.V. Sorensen, M. Heideman, C. Burrus, On
computing the split-radix FFT, IEEE Trans. Acoust.,
Speech, Signal Processing, 34(1), 1986, 152-156.

[9] M.A. Richards, On hardware implementation of the
split radix FFT, IEEE Trans. Acoust., Speech, Signal
Processing, 36(10), 2002, 1575-1581.

[10] G. Goertzel, An algorithm for the evaluation of finite
trigonometric series. American Math. Month., 65, 1958,
34-35.

