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Abstract— This paper proposes a fast subspace tracking 

method named gradient-based variable forgetting factor fast 

approximated power iteration (GVFF FAPI). Since the 

conventional FAPI uses a constant forgetting factor for estimating 

covariance matrix of source signals, it has a difficulty in being 

applied to non-stationary environments such as continuously time 

varying subspace. To cope with the drawback of the conventional 

FAPI method, we modified the forgetting factor control equation 

of the GVFF recursive least squares algorithm  and then applied to 

the FAPI method. Simulation results show that the proposed 

GVFF FAPI algorithm is superior to the conventional FAPI in 

terms of subspace error and root mean square error (RMSE) of 

tracked direction of arrival. 

 

Keywords— FAPI, GVFF RLS, subspace tracking, PAST  

I. INTRODUCTION 

 

ubspace tracking methods are an important pre-processing 

step to reduce the computational complexity in the field of 

subspace-based adaptive systems [1]. Instead of updating whole 

eigen-structure, subspace-tracking methods work only with the 

signal or noise subspace. This makes the subspace-tracking 

methods more efficient than conventional subspace estimation 

methods such as eigenvalue decomposition (EVD) or singular 

value decomposition (SVD) [1]. 

A review of historical advances in the subspace tracking 

methods can be found in [2]. In early 1990s, it turned out that 

the signal subspace tracking problem can be solved with a 

dominant complexity of only O(nr) computations per each 

update. These kinds of methods are called by a fast subspace 

tracking method and a projection approximation subspace 

tracker (PAST) is the most popular one [3]. Although the PAST 

outperforms other methods in terms of tracking accuracy and 

global convergence property, it still suffers from the lack of 

orthonormality in estimated subspace columns. In order to 

reduce the orthonormality error of the PAST, a number of 
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refined methods including OPAST (Orthonormal PAST) [4], 

NIC (Novel Information Criterion) [5], and NP3 (Natural 

Power method 3) [6] have been presented.  

The final state of the development along this baseline has 

been recently marked by an advent of the so-called fast 

approximated power iteration (FAPI) [7]. The FAPI shows 

excellent performance in global convergence property, tracking 

accuracy, and orthonormality error even when the subspace of 

input data suddenly changes with time. However, since the 

FAPI involves a constant forgetting factor (FF) when estimating 

a covariance matrix as used in the conventional recursive least 

squares (RLS) algorithm, it could not cope well with 

continuously time-varying environments. The convergence rate 

of the FAPI is slow when the FF is close to 1, whereas the 

misadjustment is large when the FF is small. Therefore, the 

FAPI cannot simultaneously achieve both the fast convergence 

rate and the small misadjustment due to the constant FF. 

In order to enhance the convergence performance of the FAPI 

method, this paper applies the gradient-based variable 

forgetting factor (GVFF) RLS algorithm to the FAPI method [8]. 

The GVFF RLS decreases the FF value when there is a large 

increase in mean square projection error (MSPE) and forces the 

FF toward the ceiling when there is negative gradient of MSPE. 

In addition, in order to improve the tracking performance in 

continuously time-varying environments, we modify the FF 

control equation in the manner that the FF has rapidly decreased 

for a positive gradient and slowly increased for negative 

gradient.  

This paper is organized as follows. In Section II, the subspace 

tracking methods, the PAST, and the FAPI, are briefly 

described. Section III introduces the GVFF RLS algorithm and  

then gives a proposed subspace tracking method called the 

GVFF FAPI. Section IV presents some simulation results to 

demonstrate the performance of GVFF FAPI. Finally, the 

conclusions of this paper are summarized in Section V.  

 

II. OVERVIEW OF SUBSPACE TRACKING METHODS 

A. Projection Approximation Subspace Tracker (PAST)[3] 

The goal of the PAST algorithm is to recursively estimate the 

principal subspace which is spanned by the eigenvectors 

associated with r dominant eigenvalues of a time-recursively 

updated covariance matrix ( )t
xx

C  of dimension N ×  N as 

follows: 
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( ) ( 1) ( ) ( )Ht t t t  
xx xx

C C x x ,               (1)                        

 

where ( )tx is a data snapshot vector of dimension n  > r and   

is a positive exponential forgetting factor close to one. An 

estimated subspace matrix ( )tW is obtained as solving the 

minimization problem of exponentially weighted cost function 

defined by 

 

2

( ( )) ( ) ( ) ( ) ( )
t

t u H

u

J t u t t u  W x W W x .          (2)                        

 

All sample vectors available in the time interval 1 u t   are 

involved in estimating the signal subspace at the time instant t. 

The key issue of the PAST is to approximate ( ) ( )H t uW x  in (2). 

In other words, an input data vector ( )ux  is projected onto the 

column space of ( )tW  by the expression of 

( ) ( 1) ( )Hu u u y W x . This results in a modified cost function  

defined by 

 

2
'( ( )) ( ) ( ) ( )

t
t u

u

J t u t u  W x W y .              (3)                        

 

The computation of ( )tW  consists of a data compression step 

(4) and an orthonormalization step (5) of a compressed matrix at 

each update as 

 

( ) ( ) ( 1)t t t 
xy xx

C C W ,                           (4)                        

( ) ( ) ( )t t t
xy

W R C ,                           (5)                        

 

where Cxy(t) is an n ×  r correlation matrix of an n dimensional 

data vector x(t) and a r dimensional  compressed data vector  

y(t) as  

 

( ) ( 1) ( )t t t y W x .                           (6)                        

 

The exponentially weighted least squares problem in (3) is 

well studied in field of adaptive signal processing. The modified 

cost function  J′(W(t)) is minimized if ( )tR is equal to Cyy(t) as 

follows: 

 
1( ) ( ) ( )t t t

xy yy
W C C ,                           (7)                        

( ) ( 1) ( ) ( )Ht t t t  
xy xy

C C x y ,              (8)                        

( ) ( 1) ( ) ( )Ht t t t  
yy yy

C C y y .              (9)                        

 

An efficient way to compute the inverse of Cyy(t) is to apply the 

matrix inversion lemma. Since this process is totally same with 

the well-known RLS algorithm, the PAST just uses it for 

updating W(t) without further derivation. The PAST method 

requires 3nr +O(r
2
) computations at each update [3].  

Note that the PAST method is derived by minimizing the  

 
 

modified cost function in J′(W(t)) in (3). Therefore, the 

columns of estimated W(t) have lack of the orthonormality 

which depends on the signal-to-noise ratio (SNR) and forgetting 

factor   [3]. 

B. Fast Approximated Power Iteration (FAPI)[7] 

An orthonormal subspace basis is required for some 

subspace-based estimation algorithms such as MUSIC [9]. The 

FAPI method applies new projection approximation instead of 

conventional projection approximation of the PAST method for 

orthonormal subspace basis as 

 

( ) ( 1) ( )t t t W W ,                            (10)                        

 

where ( )t  is a r ×  r orthonormal matrix.  

A family of power iteration methods, including the PAST and 

NP3 method, is based on conventional projection 

approximation by ( ) ( 1)t t W W . These methods have a 

constraint that R(t) must be positive definite matrix. Hence, 

these subspace trackers could not guarantee to converge if R(t) 

deviates from positive definite matrix constraint. On the other 

hand, the FAPI is not affected by this constraint because the 

FAPI relies on the less restrictive approximation as (10). The 

best approximation of W(t) is obtained by solving the following 

minimization problem  

 
2

( )
arg min ( ) ( ) ( )

Ft
t t t 

Θ
W W ,                    (11)                        

 

and the solution of (11) is obtained by 
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rt t t t t t


    
 
I g e e g ,           (12)                        

where Ir is a r ×  r identity matrix, g(t) is a gain vector, and e(t) is 

an error vector. The particular solution of (12) is calculated by 

using the matrix inversion and related specific derivations can 

be found in [7]. The total procedure of the FAPI is presented in 

Table 1 and the FAPI requires only n(3r+2) + O(r
2
) 

computation at each update [7]. 

 

III. GRADIENT-BASED VARIABLE FORGETTING FACTOR FAST 

SUBSPACE TRACKING (GVFF FAPI) ALGORITHM 

A. GVFF Recursive Least Squares 

Subspace tracking methods with a constant forgetting factor 

(FF), such as PAST, NP3, and FAPI, are not suitable for 

tracking in continuously time-varying subspace environments 

because its convergence rate is slow when the FF is close to one, 

whereas the misadjustment is large when the FF is small. In 

order to achieve the satisfactory performance of a subspace 

tracker in continuously time-varying environments, this paper 

applies the gradient-based variable forgetting factor (GVFF) 

RLS algorithm to the FAPI method. The GVFF RLS algorithm 

controls the forgetting factor by using the gradient based 

method which is derived from an improved mean square error 

(MSE) analysis of the time variable error weighting RLS 

(TWRLS) algorithm [10],[11]. The TWRLS algorithm can be 

obtained from the minimization of the least squares cost 

function parameterized by desired signal ( )id , weight vector 

( )tw , and error weighting function ( )t i t 
 as follows 
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0

( ) ( ) ( ) ( ) ( )
t

H

t i

i

J t t i t u 



  d w x .               (13)                        

 

The MSE analysis with error weighting function yields the 

following gradient updating equation [8]  

 
2 2
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   

e e
e ,           (14)                        

 

where 2 ( ) /t  e  means a gradient of MSE, t and th are 

coefficients to unite the multinomial of derivation process, 
2 ( )te and 

2
  are the estimated MSE and the estimated 

measurement noise variance, respectively. Related specific 

derivations and parameters can be found in [8]. Using the 

gradient 
2 ( ) /t  e , the gradient based control for the 

variable forgetting factor of the TWRLS algorithm is expressed 

as 
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(b) 

Fig. 1 The variable FF of GVFF FAPI : (a) using control equation (15), 

(b) using control equation (16) 

 

The control mechanism can be explained as follows. If the 

derivative /t    in (14) is positive, this enables the control 

equation to decrease the forgetting factor whenever there is a 

large increase in 2 ( )t
e

. On the other hand, /th    in (14) is 

always negative and this drives the gradient to negative after 
2 ( )t
e

 is reduced to a certain level and forces the forgetting 

factor toward the ceiling. 

 

B. GVFF FAPI 

The GVFF RLS algorithm is applied in FAPI method to 

improve the tracking performance in continuously time-varying 

environments. However, it is designed to yield better 

convergence performance in suddenly time-varying 

environments. This paper modifies the FF control equation in 

order to enhance the convergence performance in continuously 

time-varying environment as follows:  
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    (16) 

 

The control mechanism can be explained as follows. The 

variable step-size μ/(1-β(t-1))
2
 in (16) enables the control to 

rapidly reduce the forgetting factor to a sufficiently small level 

whenever there is a small and positive 2 ( ) /
e

t   . On the 

other hand, the variable step-size μ/(1-β(t-1))
-1/2

 in (16) drives 

the forgetting factor to slowly increase when 2 ( ) /
e

t    is 

negative. Figure 1 shows two cases of variable FF of the GVFF 

FAPI method that the first, controlled by the FF control 

equation (15), is represented in Fig. 1 (a) and another, 

controlled by the FF equation (16), is given in Fig. 1 (b). 

 

IV. PERFORMANCE EVALUATION 

To demonstrate the applicability in direction-of-arrival 

(DOA) systems and the tracking performances of the proposed 

method, we compared subspace error [6] and root mean square 

error (RMSE) for tracked DOA of GVFF FAPI with that of the 

conventional FAPI using the constant forgetting factor (FF).  A 

linear uniform array with 8n   sensors and a time-varying 

DOA according source signal described in Fig. 2 were used in 

this simulation. The distance between the adjacent sensor 

elements was a half of the wavelength and the frequency of 

incident signal was 10 kHz. The step-size μ of the control 

equation of the GVFF FAPI method is 0.0001. SNR was 20dB 

and a sequence of snapshot x(t) (t = 1,2,⋯) was generated 

according to the above signal model and used to track the signal 

subspace by FAPI and GVFF FAPI. After each subspace was 

updated, the MUSIC algorithm was applied to compute RMSE 

of tracked DOA from signal subspace estimate. In this 

simulation, the proposed method using the control equation (15) 

and the control equation (16) refer to GVFF FAPI 1 and GVFF 

FAPI 2, respectively. 

It is clear, from Fig. 3 that the subspace error and RMSE of 

tracked DOA about GVFF FAPI 1 and GVFF FAPI 2 are 

smaller than FAPI’s. In addition, we can confirm that GVFF 

FAPI 2 shows the superior performance to GVFF FAPI 1 in 

continuously time-varying environment. However, the 

performances between GVFF FAPI 1 and GVFF FAPI 2 was 

reversed in the converging situation after DOA suddenly 

changed at t = 1000.  

 

V.    CONCLUSION 

In this paper, we proposed a subspace tracker named as the 

GVFF FAPI. In order to enhance the tracking performance of  
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Fig. 2 Time varying DOA models of a source signal 
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Fig. 3 Performance comparison between FAPI and GVFF FAPI 1,2 : 

(a) subspace error, (b) RMSE of  tracked DOA 

 

the FAPI in continuously time-varying environment, we 

modified the FF control equation of the GVFF RLS algorithm 

and applied the modified equation to the FAPI method. 

Simulation results show that the GVFF FAPI using the modified 



 

 

the FF control equation gives the outstanding performance than 

the FAPI and the GVFF FAPI using the original FF control 

equation. 

The future works would be a theoretical analysis of the modified 

FF control equation and a comparative study withother’s FF 

control equation of VFF RLS algorithms. 
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