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ABSTRACT 
 
In a Brain-Machine Interface (BMI) system based on neural 
spike signals, the increased number of involved neurons 
does not always guarantee the higher decoding performance. 
The inclusion of lowly-tuned input neurons to the intended 
movement can aggravate a computational burden, and even 
degrade the decoding accuracy of the BMI system. In this 
paper, to find highly-tuned neurons, we present a new 
metric for evaluating the information content of neurons 
recorded in primary motor cortex (M1) area of non-human 
primate during complex finger movements. Selecting a 
subpopulation of rank-ordered neurons improves decoding 
accuracy irrespective of the decoding algorithm. In the 
maximum-likelihood (ML) neural decoding of finger 
movements, each neuron’s activation is quantified by the 
change in firing rate before and after finger movement, and 
the quantified value is then represented by the absolute 
importance indicating the contributions of each neuron to 
the intended movement. Since this absolute importance 
varies with the intended movement, we define the relative 
importance of each neuron independent of specific intended 
movements. The relative importance of each neuron is 
determined by the variance of absolute importance values 
corresponding to each intended movement. 1 
 

Index Terms— Brain-machine interface (BMI), neural 
decoding, neuron selection. 
 

1. INTRODUCTION 
 
A Brain-Machine Interface (BMI) is a communication 
pathway between a brain and an external device to provide a 
relevant alternative for people with damaged cognitive or 
sensory-motor functions [1]. To achieve this goal, a BMI 
system interprets a motor intent encoded in the recorded 
neural activities into control commands for its application. 
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Up to now, many studies have been exploited such as a 2D 
target tracking task, closed-loop control of a computer 
cursor and 3D food reaching task [2-7]. In these fields, it is 
a significant problem to accomplish high decoding accuracy 
with low computational complexity to implement potable 
and practical BMI systems. Generally, the computational 
burden of BMI systems is increased dramatically as the 
number of input neurons and even extra input neurons 
degrade the decoding accuracy due to model overfitting. So, 
the efforts to ascertain the contribution level of each input 
neuron have been continued simultaneously [9-12]. 
Recently, more dexterous and realistic control strategies of 
actions such as individuated, combined finger movements 
are a matter of the utmost concern in this field [13-20]. 
Therefore, developing an appropriate metric for ascertaining 
the contribution of neurons is needed for neural decoding of 
dexterous finger movements. 

In this paper, we present a new simple metric for 
selecting highly-tuned neurons. With the highly ranked 
neurons we performed ML neural decoding and then 
compared the performance of the ML decoding using 
randomly selected neurons. The remainder of the paper is 
organized as follows:  In Section 2, the proposed neuron 
selection method is described. Section 3 shows the 
simulation results of ML neural decoding using the selected 
neurons. Section 4 concludes this paper. 

 
2. NEURAL DECODING BASED ON THE 

PROPOSED NEURON SELECTION METHOD 
 
2.1. Neuronal Recordings from Motor (M1) Cortex 

A male rhesus monkey (Macaca mulatta) was trained 
to perform visually-cued movements of individual fingers, 
the wrist, combined fingers. There were 12 distinct 
individuated movements: flexion (f) and extension (e) of 
each of the fingers (1=thumb,…,5=little) and of the wrist 
(w) of the right hand and six combined two-finger 
movements: f12,  f23,  f45, e12, e23, e45. The monkey 
placed its right hand in a pistol-grip manipulandum which 
separated each finger into a different slot. The pistol grip 
manipulandum was also mounted on an axis allowing 



flexion and extension of the wrist. The monkey was 
instructed to flex or extend a single digit until a microswitch 
was closed. A detailed description of the methods used to 
train the monkey and the actual experimental protocols can 
be found in [12] and [13]. Single-unit activities were 
recorded from 115 task-related neurons in the M1 neurons 
of the monkey. Independent trials of each type of 
movements were recorded six times. 

 
2.2. Absolute importance of neurons 

Let  be a random variable of firing rate of a 
neuron  after the movement of . Specifically,  
denotes the baseline activity of the neuron  before the 
movement of . Then, the neural activity can be defined as 
a change of the firing rate between before and after finger 
movement [20].  
 

.                         (1) 
 
The random variable of  represents that a degree of 
the activation of the neuron  for the finger movement . 
So, the expectation of  can be used as a metric of 
neuron’s importance determining how much it contributes 
to respective movements. This can be attained by computing 
the average of  for possible training sets, that is, 
 

,          (2) 

 
where  is the number of independent training sets. This 
metric shows the absolute importance of each neuron for a 
given movement. Fig. 1 shows that each neuron has various 
values of µn(m) for some different movement type of m. The 
absolute importance, however, cannot be directly used for 

neural decoding because the neural decoding is to find the 
movement corresponding to given spike signals. 
 
2.2. Ordering of neurons by relative importance 

The good candidate as an input neuron is a highly-
tuned one that a trend of neural activities of the 
corresponding neuron is very diverse for the each finger 
movement. A statistical point of view, the probability 
density functions of each random variable  are 
distinguishable for each finger movement. With this respect, 
we define a relative importance of neurons which measures 
a degree of difference of neural activity for each movement. 
With this respect, we consider the variance of the absolute 
importance of each neuron for the tested movements. This is 
computed by 

 

,                       (3) 

 
where  denotes the number of the tested movements and 

 is the mean of the absolute importance,  for the 
tested movements given by 

 

.                             (4) 

 
After computing the relative importance of each neuron, we 
can rank neurons by their impact factors of relative 
importance. 
 

3. RESULTS AND DISCUSSION 
 
Neuron selection is crucial for the future applications of 

neuroprosthetic control because we need to reduce 
computational complexity and thus implement BMIs with 
low cost and low power. The proposed method for neuron 
selection was examined by comparing the performance of 
the ML decoding with Skellam and Gaussian distribution, 
but using the randomly selected neurons and the highly-
ranked neurons ordered by the proposed method. The 
observation interval of Δt was 100ms and the firing rate of 
rn(m) was obtained by averaging the number of spikes for  
300ms after the movement of m. The baseline activity of 
rn(0m) was obtained by averaging the number of spikes for  
800ms before the movement of m. Six independent trials 
were recorded for each movement, the five trials of which 
were used for training, i.e., K=5 and the rest trial was used 
for testing. Thus, six different combinations can be used for 
training and testing. The ML decoding without ordering was 
performed with randomly chosen N neurons. To raise the 
reliability of the decoding performance, the random 
selection was repeated 400 times. On the other hand, for the 
rank-ordered neurons, if N neurons are used for ML 
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Fig. 1. Absolute importance of six randomly-selected neurons for each of the 
five individuated-finger movements.  



decoding we can choose top (N+L) ranked neurons from the 
list in descending order. Then, N neurons are randomly 
selected in order to raise the reliability for the results of 
decoding accuracy by increasing the possible neuron groups. 
So, the possible number of selections is, N+LCN this results in 
the total number of movements for decoding of 

. Among the recorded six trials data, the 
neural activities are averaged over five independent trials to 
train the ML model and the one trial data is used for testing. 
 
3.1. Absolute importance of neurons 

We first computed µn(m), the absolute contribution 
impact of each neuron for the 12 individuated movements to 
verify the metric for determining neurons’ importance. Fig. 
1 shows that each neuron has various values of µn(m) for 
some different movement type of m. To clearly show the 
effectiveness of µn(m), we ordered neurons according to 
µn(m) and chose the one of 12 ranked neuron lists. We used 
the highly ranked neurons for ML neural decoding and 
computed the false detection rates for each desired 
movement m. Since µn(m) is most highly related to the 
movement of m, the use of  the ordered neurons by µn(m) 
yields the lowest false detection rate (FDR) when the 
desired movement is compared to others. Figs. 2 show the 
FDRs for each desired movement with the 5 neurons 
ordered by µn(1) and µn(3), the “1” and “3” denote the 
finger movement f1 and f3.  In both cases, the FDR for the 
desired movement of m=1 had the lowest value but the 
difference between the FDR of m=1. This means that each 
movement has its own pattern of neural activation.  

The ordered result by µn(m) only shows the activity 
level of each neuron involved in the movement of m, so it  
does not assure the accurate neural decoding for the 
remaining 11  movements. Because the desired movement is 
not revealed in real environments, the absolute importance 
is not appropriate as a metric for ascertaining the 
importance of neurons. 
 
3.2. Selection of Neurons 

Since the goal of neural decoding is to find the intended 
movement corresponding to given neural activity, the use of 
ordered neurons by µn(m) may not provide the best 

performance. The absolute importance for the specific 
movement gives the information mainly related to the 
specific movement and thus we need to obtain relative 
importance by computing the variance of the absolute 
importance values, Vn. For the 12 individuated movements, 
we computed Vn for each neuron and arranged them in the 
decreasing order. Fig. 3 shows Vn and for the ordered 
neurons, where we can find that some neurons have larger 
values of  than others. Since  is the mean value of 
µn(m) for all movements, it represents the mean of absolute 
importance of the neuron n. This means that some neurons 
with the high absolute importance may have low relative 
importance if they have the similar contributions to all 
movements. Also, from the plot of Vn we can find that a 
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Fig. 2. False-detection rate for each given movement with the ordered 
neurons by µn(1) , µn(3) and randomly-selected neurons. The number of 
neurons involved in decoding is 5. 
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Fig. 4. Performance of the ML decoding methods in individuated finger 
movements based on Skellam and Gaussian distributions with ordered 
neurons by the absolute importance (when m=1), the variance of the 
individuated movement activity and without any ordering.  
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Fig. 3. Variance and mean of averaged absolute importance of each neuron 
for 12 individuated movements. 



knee occurs near the 10th neuron, which makes us expect 
that neural decoding performance would saturate around 
10th neurons. 

In the fig. 4, the use of the proposed neuron selection 
method in individuated movements improved decoding 
accuracy by about 23.30 % in the case of 5 neurons and 
about 9.23 % in the case of 10 neurons. With only 15 
highly-ranked neurons, the decoding accuracy of almost 
99.48% was achieved. As shown in the fig. 5, the 
performance improvement is still maintained when 
combined movements of two fingers were added though the 
decoding accuracy was about 95.66%.  

 
4. CONCLUSION 

 
We have presented a neuron selection method based on the 
neural activity by defining the relative importance of each 
neuron contributing to motor movements. The proposed 
neuron selection method improved the neural decoding 
performance remarkably due to the use of highly tuned 
neurons. In other respect, neuron selection may decrease the 
required number of neurons for neural decoding. This is 
very meaningful for implementation of low-power and 
potable BMI devices.  
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Fig. 5. Total movements performance of the Skellam and Gaussian
distribution based ML decoding methods with ordered neurons by the
variance of the combined-finger activity, and without any ordering. 


