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Parallel Deep Learning Detection Network in the MIMO Channel

Xianglan Jin , Member, IEEE, and Hyoung-Nam Kim , Member, IEEE

Abstract— For deep learning detection networks in the
multiple-input-multiple-output (MIMO) channel, deepening the
network does not significantly improve performance beyond a
certain number of layers. In this letter, we propose a parallel
detection network (PDN) that consists of several deep learning
detection networks in parallel without connection. By designing
a specific loss function and reducing similarity between detection
networks, the PDN obtains a considerable diversity effect. The
performance of the PDN improves significantly as the number
of parallel detection networks increases in time-varying MIMO
channels. This is superior to the existing deep learning detection
networks, in both performance and complexity.

Index Terms— Deep learning, detection, MIMO.

I. INTRODUCTION

IN COMMUNICATION systems, multiple-input-multiple-
output (MIMO) systems that send multiple data streams

simultaneously have become very popular due to the require-
ment for high data rates. The computational challenges in
detecting the multiplexed signals have led to some linear
detectors such as zero-forcing and minimum mean square
error [1], and several sub-optimal detectors [2] such as the
sphere decoding (SD) [3], [4], and the semidefinite relaxation
(SDR) [5].

On the other hand, detection methods with data-driven
approach have recently begun to be studied [6]–[10]. In [6],
a trainable projected gradient detector was proposed for mas-
sive overloaded MIMO channels. By incorporating deep learn-
ing into the orthogonal approximate message passing (OAMP),
the authors in [7] proposed a model-driven detection called
OAMP-Net. In addition, a deep learning MIMO detection
network (DetNet) was proposed in [8], [9]. The DetNet applies
a deep unfolding approach that transforms a computationally
intractable probabilistic model into a deep neural network by
unfolding iterative process [11]. In [10], the authors proposed a
multilevel MIMO detection by applying the similar deep learn-
ing network structure in [8] and introducing a multi-plateau
sigmoid function. The above works demonstrate the possibility
of signal detection in time-varying MIMO channels using deep
learning techniques.
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The DetNet shows reasonable performance compared to
the existing sub-optimal detectors when the number of the
receiving antennas is sufficiently large; otherwise, the perfor-
mance is quite far form them. Deepening the network does not
significantly improve performance beyond a certain number of
layers. To solve this problem, we propose a new deep learning
detection network called parallel detection network (PDN)
which divides a single deep detection network into multiple
parts and arranges them in parallel. By training the multiple
parallel neural networks simultaneously and selecting the one
that maximizes the likelihood function, a diversity effect is
obtained and so the error performance is improved. In the
PDN, similarity between detection networks degrades the
diversity effect. In order to avoid the similarity as much as
possible, we apply a specific loss function in training. With this
design, the performance of the PDN improves significantly as
the number of parallel networks increases, and is much better
than the performance of the existing deep learning detections
in the same total number of detection layers. Simulation results
demonstrate the superiority of the proposed PDN.

Throughout the letter, we use the following notations. The
superscript (·)T denotes the transpose of a matrix; tr(·)
denotes the trace of a matrix; Re{·} and Im{·} mean the real
and imaginary parts of a complex number, respectively; E[·]
denotes the expectation with respect to the random variables
in the argument. Cn×m denotes a set of n × m complex
matrices; [·]ij means the element in ith row and jth column
of a matrix; [·]k:l means a vector consisting of the elements
from the kth row to the lth row in the original vector;
∇ denotes the gradient with respect to the parameters in the
argument; A ∼ CN (0, σ2

AI) denotes that the elements of A
are independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussian random variables with zero
mean and variance σ2

A. We omit the size of the identity
matrix I since it can be revealed from the size of the matrix A.

II. SYSTEM MODEL

We consider a MIMO fading channel with Nt antennas
at the transmitter and Nr antennas at the receiver. Then the
received signal yC ∈ CNr is written as

yC = HCxC + zC (1)

where xC =[xC
1 xC

2 . . . xC
Nt

]T ∈ CNt , HC ∈ CNr×Nt is the
channel coefficient matrix of the MIMO fading channel, and
the Nr × 1 noise vector zC is distributed as CN (0, σ2I).

To simplify the expressions, we convert the complex
system model to an equivalent real system. Let x =

[x1 x2 . . . x2Nt ]T =
�
Re{xC}
Im{xC}

�
, y =

�
Re{yC}
Im{yC}

�
, z =�

Re{zC}
Im{zC}

�
, and H =

�
Re{HC} − Im{HC}
Im{HC} Re{HC}

�
. Then the

1558-2558 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6131-2556
https://orcid.org/0000-0003-3841-448X


JIN AND KIM: PARALLEL DEEP LEARNING DETECTION NETWORK IN THE MIMO CHANNEL 127

Fig. 1. The parallel detection network in the MIMO channel.

Fig. 2. A single detection layer Ly(m)
k in the parallel detection network.

equivalent real system model is written as

y = Hx + z. (2)

We assume |S| = M , S ={s1, s2, . . . , sM}, and sm = 2m −
M − 1 for m = 1, . . . , M . xn is randomly chosen from the
symbol set S with equal probability, thus we have E[x2

n] =
�M

i=1 |si|2
M . Since the symbols x1, x2, . . . , x2Nt are i.i.d., the

signal-to-noise ratio (SNR) is written as

SNR =
E�Hx�2

E�z�2
=

E�HC�2

NtNr
· ρ

where ρ = 2Nt

�M
i=1 |si|2

Mσ2 .
In this MIMO channel, we want to detect x in the maximum

likelihood (ML) sense written as

x̂ = arg min
x∈S2Nt

��y − Hx
��2

. (3)

This is known to be nondeteministic polynomial-time (NP)-
hard. In the next section, we propose a parallel deep learning
detection network to solve the problem approximately.

III. PARALLEL DETECTION NETWORK

A. Structure of the Parallel Detection Network

The parallel detection network (PDN) includes P detection
networks in parallel as shown in Fig. 1. The mth detection
network (inside the dashed box in Fig. 1), Net(m), consists
of L detection layers Ly(m)

1 , Ly(m)
2 , . . . , Ly(m)

L , and the P
detection networks are not connected each other and they are
trained simultaneously by minimizing a specific total loss.

In detail, the kth detection layer in the mth detection
network, Ly(m)

k , is depicted in Fig. 2 which includes one input
sublayer

i(m)
k =

⎡
⎢⎢⎣
x̂(m)

k−1 − α
(m)
1k HTHx̂(m)

k−1 + α
(m)
2k HTy

Diag(HTH)x̂(m)
k−1

v(m)
k−1

⎤
⎥⎥⎦ (4)

and one output sublayer

v(m)
k = W(m)

1k i(m)
k

x̂(m)
oh,k = ϕ

�
W(m)

2k i(m)
k

�
(5)

x̂(m)
k = Sym

�
x̂(m)

oh,k

�
. (6)

We explain the above two sublayers in detail.
The first line of the input i(m)

k is from the idea of the
projected gradient descent method applied in [9]:

x̂k = φ

x̂k−1 − δk∇

��y − Hx
��2

���
x=x̂k−1

�

= φ

x̂k−1 − δ�kH

THx̂k−1 + δ�kH
Ty

�
(7)

where φ(·) is an element-wise nonlinear projection oper-
ator, e.g., φ(x) = [sgn(x1), . . . , sgn(x2Nt)]T for x ∈
S2Nt = {+1,−1}2Nt, x̂k−1 is the estimate in the (k −
1)th iteration, δ�k = 2δk is a step size in the kth itera-
tion, and x̂k is the estimate in the kth iteration. In (4),
we use trainable scalar step sizes α

(m)
1k and α

(m)
2k instead

of the fixed one, δ�k, to improve the performance. Further-
more, we add Diag(HTH)x̂(m)

k−1 as another input in i(m)
k ,

where Diag(HTH) = diag([HTH]1,1, . . . , [HTH]2Nt,2Nt)
and [HTH]n,n is the maximum achievable channel power of
the nth symbol without interference. This provides informa-
tion about the best achievable performance for the machine.
Moreover, the auxiliary vectors v(m)

k−1 and v(m)
k are added in

the input and the output to speed up the training convergence.
Setting the size of v(m)

k−1 as 2Nt, we have the input i(m)
k with

the size of 6Nt.
In the output sublayer, we multiply 2Nt × 6Nt weight

matrix W(m)
1k , and 2MNt × 6Nt weight matrix W(m)

2k and
the input i(m)

k , apply the softmax function ϕ(z1, . . . , zM ) =�
ez1

�
M
j=1 ezj

, . . . , ezM
�

M
j=1 ezj

�T
, and then obtain the soft estima-

tors, x̂(m)
oh,k, which are supposed to be compared with the

one-hot encoding of the transmitted signals, xoh, i.e., the
one-hot encoding for xn = si is [xoh]((n−1)M+1):nM = ei,
where [ei]j = 0 if j �= i and [ei]j = 1 if j = i for
i ∈ {1, . . . , M}. The output of the nth softmax function,
[x̂(m)

oh,k]((n−1)M+1):nM in (5), represents Pr(xn = si|y), i =
1, . . . , M , satisfying

�M
i=1 Pr(xn = si|y) = 1. Taking a

conditional expectation on xn, we have an estimator

x̂n = E[xn|y] =
M�
i=1

siPr(xn = si|y), (8)

which is expressed as the nth output of Sym(·), i.e., [x̂(m)
k ]n =

[Sym
�
x̂(m)

oh,k

�
]n =

�M
i=1 si[x̂

(m)
oh,k](n−1)M+i in (6). Then the

2Nt × 1 estimated symbol vector x̂(m)
k which is the output

of Sym(·) enters the next detection layer together with v(m)
k .

In the last layers, we have [x̂(m)
L ]n = sî where î =

arg max
1≤i≤M

[x̂(m)
oh,k](n−1)M+i which means î=arg max

1≤i≤M
Pr(xn=

si|y). Finally, we compare all the detected symbols obtained
from P detection networks and choose the one that maximizes
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the likelihood function (the process of ML in Fig. 1):

x̂ = arg max
x∈{x̂(1)

L ,...,x̂
(P)
L }

p(y|x)

= arg min
x∈{x̂(1)

L ,...,x̂
(P)
L }

�y − Hx�2. (9)

To further improve the performance, we adopt the residual
learning [12], [9], i.e., setting a weighted average of the
previous output and the current output as a new current output.

B. Loss Function

In the PDN, a set of parameters that needs to be optimized
is written as

θ = {θ(1), θ(2), . . . , θ(P )},
where θ(m) = {α(m)

1k , α
(m)
2k ,W(m)

1k ,W(m)
2k , k = 1, . . . , L},

m = 1, . . . , P . Since the parallel detection networks have
the same structure and use the same training data, it is
likely to obtain similar results from multiple networks,
Net(1), Net(2), . . . , Net(P ). This degrades the diversity effect.
Hence, we apply a specific loss function as

Loss =
L−1�
k=1

lmin

�
x̂(1)

oh,k, . . . , x̂(P )
oh,k,xoh

�
+ lsum

�
x̂(1)

oh,L, . . . , x̂(P )
oh,L,xoh

�
, (10)

where

lmin
�
x̂(1)

oh,k, . . . , x̂(P )
oh,k,xoh) = min

m∈{1,2,...,P}
�x̂(m)

oh,k − xoh�2

lsum
�
x̂(1)

oh,L, . . . , x̂(P )
oh,L,xoh) =

P�
m=1

�x̂(m)
oh,L − xoh�2.

To illustrate how it works, we provide a toy example and
explain the reasons.

Example 1: Consider a PDN with P = 2 and L = 10. Let
m̂k = arg min

m∈{1,2}
�x̂(m)

oh,k − xoh�2. In jth iteration, we have

m̂k = 1 for k = 1, 3, 7, 9 and m̂k = 2 for k = 2, 4, 5, 6, 8
corresponding to a training data set and the parameter set θj−1

given from the previous iteration. Taking the gradient descent
method as an example, the update in jth iteration is written as

θj = θj−1 − η∇θLoss
��
θ=θj−1

(11)

where η is a step size, and

∇θLoss
��
θ=θj−1

= ∇θ

 9�
k=1

lmin

�
x̂(1)

oh,k, x̂(2)
oh,k,xoh

�

+ lsum
�
x̂(1)

oh,10, x̂
(2)
oh,10,xoh

�����
θ=θj−1

=

⎡
⎢⎢⎢⎣
∇θ(1)

 �
k∈{1,3,7,9,10}

�x̂(1)
oh,k − xoh�2

����
θ(1)=θ

(1)
j−1

∇θ(2)

 �
k∈{2,4,5,6,8,10}

�x̂(2)
oh,k − xoh�2

����
θ(2)=θ

(2)
j−1

⎤
⎥⎥⎥⎦ .

(12)

We observe that the update to the parameter set θ(1) (corre-
sponding to Net(1)) is related to losses from the layers Ly(1)

k ,
k = 1, 3, 7, 9, 10, while the parameter set θ(2) is updated by
reflecting losses from the layers Ly(2)

k , k = 2, 4, 5, 6, 8, 10.
Through this layer puncturing, the similarity between two
networks is reduced.

Note that if the training data set is changed, the layer
indices applied in the updates for θ(1) and θ(2) will
also be changed although they do not overlap each other
except for the last layer.

Based on Example 1, we explain the reasons for the perfor-
mance improvement by applying the loss function as follows.

• lmin makes the minimum loss smaller and the total per-
formance is improved by (9).

• On the other hand, by applying lmin, not all the L layers
are considered in the update to optimize a single detection
network Net(m) (see (12)). Instead, each of the detection
networks is trained by applying losses from parts of layers
with partitioned indices. This reduces similarities between
detection networks, Net(1), . . . , Net(P ), and results in a
considerable diversity effect applying (9).

• Besides, any of the last detection layers, Ly(m)
L , m =

1, 2, . . . , P , cannot be punctured and must attend train-
ing since the comparison in (9) is done with the last
layers.

C. Training Detail

The training is implemented on the TensorFlow frame-
works [13] by applying the Adam optimizer, a variation of
the stochastic gradient descent method [14].

The goal of deep learning detectors is to train the detection
network off-line and apply it in time-varying channel environ-
ments directly. To accomplish the purpose and reduce training
time, we apply the following three methods in the training.

- Training the PDN by using samples of uniformly distrib-
uted signal x and channel matrices HC ∼ CN (0, I).1

- Training the network under uniformly distributed SNR in
a reasonable range so that the detector can be applied to
various SNRs.

- Training the network using normalized input, i.e., apply-
ing HT H

1
Nt

tr(HT H)
, HT y

1
Nt

tr(HT H)
, and Diag(HT H)

1
Nt

tr(HT H)
in (4) to

speed up convergence.

In the training phase, Nbatch = 1000 data samples of x,y,
and H are generated according to their relationship in each
iteration, and Niteration = 50000 iterations are implemented to
P detection networks with L detection layers. We initialize
v0 = 1 and x̂0 = 0. In the jth iteration, we compute the
bit error rate (BER), Pb, and compare it to a minimum error
Pb−min. If Pb < Pb−min, the parameters in θj are saved to θ∗

and Pb−min is set to Pb. After Niteration iterations, we have the
final parameter set θ∗.

Once θ∗ is determined, the transmitted signal in the
time-varying MIMO fading channel can be detected in real
time.

1The reason for choosing the channel model is that Rayleigh fading channel
is a reasonable channel model in urban environments.
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Fig. 3. Frequency of the detection network indices for the PDN with L = 20
in the MIMO Rayleigh fading channel with Nr = Nt = 20 in ρ = 12 dB.

IV. SIMULATION RESULTS

In the previous section, we propose a parallel detection
network which improves the drawback of the DetNet [9]. First,
we clarify the improvements of the proposed PDN compared
to the DetNet [9].

i) The PDN has an additional input of Diag(HTH)x̂(m)
k−1

in each detection layer which denotes the signals with
the maximum achievable channel powers. This improves
performance by leading the machine to the best per-
formance signals. Moreover, the PDN has one input
sublayer and one output sublayer and no hidden sub-
layers in each detection layer unlike the DetNet. To
simply compare their complexity, we apply the naive
calculation method, i.e., the complexity is O(nmp) for
the multiplication of matrices of n×m and m× p, and
O(n3) for the n×n matrix inversion. Let β = Nr

Nt
. The

calculations of HTH and HTy that are the common
parts for the two detections require the complexity of
O

�
8β×N3

t

�
and O

�
4β×N2

t

�
, respectively. Except for

these, the PDN with P detection networks and L layers
requires the complexity of O

�
[12M + 16]PL × N2

t

�
,

and the DetNet with LD layers has the complexity of
O

�
[4M2 + 12M + 4]LD × N2

t

�
. When LD = PL, the

PDN is less complicated than the DetNet for any M ≥ 2.
ii) Ultimately, the PDN divides a single deep detection

network into multiple parts and arranges them in parallel
without connection. By designing a specific loss func-
tion, a diversity effect is obtained from multiple parallel
detection networks.

To show the diversity effect directly, we compare frequencies
of the detection network indices of 1, . . . , P when all P
detection networks have different detection results.2 Fig. 3
shows the frequencies of the detection network indices of
the PDN with L = 20 for the quadrature phase shift key-
ing (QPSK) modulation in the MIMO Rayleigh fading channel
with Nr = Nt = 20 in ρ = 12 dB. From the figures, we can
find that the occurrences of the indices are relatively evenly
distributed from 1 to P for both cases of P = 4 and P = 8.
This shows that the parallel structure of the PDN brings a
diversity effect.

2If any two networks have the same detection results, the PDN will always
choose the network with the lower index. Thus, if we look at the frequency of
network indices without any conditions, the first index will of course appear
the most and then other indices will appear sequentially.

Fig. 4. BER comparison of deep learning detectors using QPSK over the
MIMO Rayleigh fading channel with Nr = 20, Nt = 20.

Fig. 5. BER comparison of deep learning detectors using QPSK over the
MIMO Rayleigh fading channel with Nr = 30, Nt = 20.

Now we are ready to compare the performance. Among var-
ious sub-optimal detectors, we compare the proposed detection
algorithm and the DetNet to the SD in [4] for the case of
Nt = 20 and Nt = 30. Since the SD cannot be completed in
a reasonable time for larger size of Nt, we apply another kind
of deep learning detection, OAMP-Net [7], for reference in the
case of Nt = 64. Moreover, there is one more deep learning
detector, the multilevel MIMO detection and its twin structure
that trains two multilevel MIMO detections separately and
applies the better one [10]. Since the paper [10] did not
suggest the multi-plateau sigmoid function for the case of
QPSK (M = 2 case) and the loss function, we compare the
performance for Nr = Nt = 20 by appropriately selecting
a multi-plateau sigmoid function and a loss function. For
the deep learning detectors, we apply the same batch size
of Nbatch = 1000 in each iteration and Niteration = 50000
iterations in the training.

Figs. 4, 5, 6, and 7 show the BERs of the PDN and DetNet
using QPSK in the MIMO Rayleigh fading channel for the
cases of Nr = Nt = 20, Nr = 30, Nt = 20, Nr = Nt = 30,
and Nr =Nt =64, respectively, where the DetNet applies LD

detection layers, and the multilevel-twin uses LM layers in
each multilevel MIMO detector and so has 2LM equivalent
layers. For the PDN, the performance improvement achieved
by increasing the number of the serial detection layers is less
than the performance improvement achieved by increasing P
when the total number of detection layers exceeds L. Thus we
set L=20 in the cases of Nr =Nt =20 and Nr =Nt =30, and
L=10 in the cases of Nr =30, Nt =20 and Nr =Nt =64.
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Fig. 6. BER comparison of deep learning detectors using QPSK over the
MIMO Rayleigh fading channel with Nr = 30, Nt = 30.

Fig. 7. BER comparison of deep learning detectors using QPSK over the
MIMO Rayleigh fading channel with Nr = 64, Nt = 64.

Fig. 8. BER comparison of deep learning detectors using 16QAM over the
MIMO Rayleigh fading channel with Nr = 25, Nt = 20.

From the curves, one can observe as follows.

• The DetNet performs quite well compared to the SD for
the case of Nr = 30, Nt = 20, but not for the cases of
Nr = Nt = 20 and Nr = Nt = 30. This illustrates the
motivation of this letter.

• Comparing the PDN and the DetNet for LD = PL (with
the same markers in figures), the PDN obtains much
better performance than the DetNet.

• The performance of the PDN overcomes that of the
DetNet even in a single detection network (P = 1). This
means that the input Diag(HTH)x̂(m)

k−1 in (4) definitely

helps improve performance and demonstrates the related
explanation in i).

• The PDN greatly improves performance as P increases,
while the DetNet does not as LD increases for all cases
of Nr, Nt. This demonstrates the diversity effect of the
proposed PDN.

• With the same equivalent number of detection layers,
the PDN achieves much better performance than the
multilevel-twin detection for the case of Nr = Nt = 20
and the OAMP-Net for the case of Nr =Nt =64.

Fig. 8 shows the performance using 16 quadrature amplitude
modulation (QAM) in the MIMO Rayleigh fading channel
with Nr = 25, Nt = 20. The results are similar to the case of
QPSK.

V. CONCLUSION

In this letter, we proposed a parallel detection net-
work (PDN) that consists of several deep learning detection
networks in parallel without connection. By designing a spe-
cific loss function, the performance of the PDN improves
significantly as the number of parallel networks increases
in the time-varying MIMO fading channel. This overcame
the problem of the DetNet, where increasing the number of
detection layers does not significantly improve performance.
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